On the Categorical Meaning of Hausdorff

نویسنده

  • WALTER THOLEN
چکیده

Hausdorff and Gromov distances are introduced and treated in the context of categories enriched over a commutative unital quantale V . The Hausdorff functor which, for every V-category X, provides the powerset of X with a suitable V-category structure, is part of a monad on V-Cat whose Eilenberg-Moore algebras are order-complete. The Gromov construction may be pursued for any endofunctor K of V-Cat. In order to define the Gromov “distance” between V-categories X and Y we use V-modules between X and Y , rather than V-category structures on the disjoint union of X and Y . Hence, we first provide a general extension theorem which, for any K, yields a lax extension K̃ to the category V-Mod of V-categories, with V-modules as morphisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence and quantale-enriched categories

Generalising Nachbin's theory of ``topology and order'', in this paper we   continue the study of quantale-enriched categories equipped with a compact   Hausdorff topology. We compare these $V$-categorical compact Hausdorff spaces   with ultrafilter-quantale-enriched categories, and show that the presence of a   compact Hausdorff topology guarantees Cauchy completeness and (suitably   defined) ...

متن کامل

Irreducible Equivalence Relations, Gleason Spaces, and de Vries Duality

By de Vries duality, the category of compact Hausdorff spaces is dually equivalent to the category of de Vries algebras (complete Boolean algebras endowed with a proximity-like relation). We provide an alternative “modal-like” duality by introducing the concept of a Gleason space, which is a pair (X,R), where X is an extremally disconnected compact Hausdorff space and R is an irreducible equiva...

متن کامل

A Unified Functional Look at Completion in MET, UNIF and AP

In this paper we establish an alternative characterization of the completion theory for metric spaces which makes fundamental use of a special type of real valued maps, and we derive alternative descriptions for the completions of both Hausdorff uniform and Hausdorff uniform approach spaces. Mathematics Subject Classifications (2000): 54B30, 54D35, 54E15, 54E35, 54E99.

متن کامل

A Model Category Structure on the Category of Simplicial Multicategories

We establish a Quillen model structure on simplicial (symmetric) multicategories. It extends the model structure on simplicial categories due to J. Bergner [2]. We observe that our technique of proof enables us to prove a similar result for (symmetric) multicategories enriched over other monoidal model categories than simplicial sets. Examples include small categories, simplicial abelian groups...

متن کامل

Regularity of the category of Kelley spaces

We show that the cartesian closed category of compactly generated Hausdorff spaces is regular, but is neither exact, nor locally cartesian closed. In fact we find a coequalizer of an equivalence relation which is not stable under pullbacks.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009